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Abstract

The use of error-correcting codes as a source of ef®cient
designs of phase permutation schemes is described.
Three codes are used, all taken from the Bricogne
BUSTER program [Bricogne (1993). Acta Cryst. D49,
37±60]: the Hamming [7, 4, 3], the NordstroÈ m±Robinson
(16, 256, 6) and the Golay [24, 12, 8] or its punctured
[23, 12, 7] form. These are used in a maximum-entropy±
likelihood phasing environment to carry out phase
permutation of basis-set re¯ections instead of the usual
quadrant permutation or magic integer approaches. The
use of codes in this way inevitably introduces some
errors in the phase choices, but for most structures this is
not signi®cant especially when the gain in sampling
ef®ciency is considered. For example, the Golay
[24, 14, 8] allows the permutation of 24 centric phases
in such a way that only 4096 phase sets are produced
instead of 224 � 16 777 216, and one of these sets has, at
most, only four wrong phases. The method is success-
fully applied to three powder diffraction data sets of
increasing complexity, and with increasing degrees of
overlap {Mg3BN3, Sigma-2 ([Si64O128] � 4C10H17N) and
the NU-3 zeolite}, a sparse electron diffraction data set
for buckminsterfullerene, C60, and the small protein
molecule crambin at 3 AÊ resolution where 42 re¯ections
are phased with a U-weighted mean phase error of 58.5�.

1. An introduction to error-correcting codes

We present here an implementation of the use of error-
correcting codes as a source of ef®cient phase permu-
tation in a maximum-entropy (ME) ab initio phasing
environment, ®rst proposed and used by Bricogne (1993,
1997b). Error-correcting codes (e.c.c.'s) are an integral
part of late 20th century digital communications.
Starting with the classic work of Shannon (1948a,b),
Golay (1949) and Hamming (1947), they are now used
everywhere, for example, in CD-ROM devices, in digital
telephones and in pictures transmitted from space. From
these examples, it may seem strange to see the method

used with respect to the crystallographic phase problem,
but there is a link between certain e.c.c.'s and experi-
mental designs (Bricogne, 1993, 1997b) which can be
used as a source of ef®cient phase-permutation proce-
dures not unlike the use of magic integers (White &
Woolfson, 1975; Main, 1977, 1978). To understand how
this can be performed, we ®rst need to explore the basic
de®nitions of coding theory. The literature on the
subject is vast, but a good introduction may be found by
Hill (1993), and the classic book is by MacWilliams &
Sloane (1977); there is also an interesting and partly
historical introduction by Thompson (1983).

A q-ary code comprises a set of sequences of symbols
where each symbol is chosen from a set Fq �
f�1; �2; : : : ; �qg of q elements. The set Fq is called the
alphabet, and (Fq)n is the set of all ordered n-tuples of
these symbols a � a1a2 . . . an, where aj 2 Fq. A q-ary
code of length n is, therefore, generated as a subset of
(Fq)n, i.e. Fq � (Fq)n. A codeword comprises a sequence
of symbols, and the set of M codewords de®nes the code,
C. Throughout this paper, we will be concerned only
with binary codes; in this case, the alphabet is the binary
digits 0, 1, i.e. F2 � f0; 1g. Binary codes are by far the
most important e.c.c.'s, but many others, e.g. ternary and
quaternary, exist and could be useful as a future source
of experimental design in crystallography.

We now need the concept of the minimum distance, d,
between the codewords. The (Hamming) distance
between two codewords in C is the number of places in
which they differ. The minimum distance is the smallest
of these distances. Denote three codewords of any code
as the vectors x, y and z; then the Hamming distance
(Hamming, 1947) between x and y is d(x, y), and is a
legitimate distance function since

(i) d�x; y� � 0

(ii) d�x; y� � d�y; x�
(iii) d�x; y� � d�x; z� � d�z; y�

iff x � y;

8 x; y 2 �Fq�n;
8 x; y; z;2 �Fq�n:

A code comprising M codewords of length n and
minimum distance d is described as an (n, M, d) code.
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An e.c.c. can detect up to dÿ 1 errors and correct up to
�dÿ 1�=2 errors in any codeword by assigning the
closest codeword (i.e. that with the minimum Hamming
distance) to that received, and it is this property that
makes codes so important in the transmission of signals.
The design of an ef®cient code consists of using the
greatest number of codewords for a given n while
maximizing d, and is a central problem in coding theory.

As an example, consider the simple binary code {0000,
1100, 0110, 0011, 1001}. There are ®ve codewords of
length four characters. The Hamming distances vary
between 2 and 4, so that this is a (5, 4, 2) code. It can
detect up to one error, but cannot correct any errors.

An important class of codes is the linear codes which
are denoted [n, k, d]. In this instance, n and d are
de®ned as before, but k de®nes the number of rows in a
generator matrix. The latter is used to generate the
codewords by 2k linear combinations of the words in the
matrix under modulo 2 arithmetic in the binary case.

Codes can also be punctured by deleting the last
column of the generator matrix for linear codes or the
last bit of every codeword in the non-linear case. For
example, the (5, 4, 2) code above would puncture to give
the code comprising {000, 110, 011, 001, 100}, i.e. a
(4, 4, 1) code.

1.1. Error-correcting codes, experimental designs and
combinatorics

The relationship between certain e.c.c.'s and experi-
mental designs is well documented (see, for example,
Anderson, 1989, chs. 6 and 7). The classic example of a
relationship between a simple experimental design and
an error-correcting code is the following example taken
from Anderson (1989).

Consider an experiment to assess a new brand of
coffee by comparing it with six existing varieties. De®ne
a set S � {1, 2, 3, . . . , 7} whose members are the seven
coffee varieties suitably labelled 1±7, one of which is the
new brand. To carry out the tasting experiment, a
number of crystallographers are chosen to decide the
relative merits of these varieties. Not every crystal-
lographer is to taste all seven varieties, however, since it
is harder to choose between seven than, say, three
varieties, and the experiment is more time consuming. A
block design is therefore constructed to reduce the
number of trials and yet still allow the necessary infor-
mation to be measured and assessed. The trials are
arranged such that each crystallographer tastes the same
number of brands, and each pair of brands is compared
by the same number of crystallographers. To do this,
blocks are selected which are subsets of S such that:

(i) every block has the same number of elements;
(ii) every pair of varieties is contained in the same

number of blocks.
Let us choose the following seven blocks as follows:

f1; 2;4g; f2; 3; 5g; f3; 4; 6g; f4; 5; 7g; f5; 6; 1g;
f6; 7; 2g; f7; 1; 3g: �1�

We can see that each crystallographer tastes three
coffees, and no-one tastes the same three, and each
variety is tested three times. This is a balanced block
design of the type (7, 7, 3, 3, 1), i.e. there are seven
varieties, seven subsets, three elements in each subset,
each element appears three times in all the blocks, and
each pair of varieties appears only once. The selection of
the coffee varieties can thus be seen as a problem in
combinatorics, and e.c.c.'s can play a major role here
also. The combination of coffee varieties and testers can
be represented in binary form using the concept of the
incidence matrix, M, of the design

M �

1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: �2�

Each row represents a block and each column repre-
sents a variety. The correspondence between this and (1)
should be obvious. Now construct a ones complement
matrix, M0, in which all the zeros in M are replaced by
ones and the ones by zeros. Construct a third matrix, N,
containing M, M0 and with two new rows and a parity bit
in the ®rst column,

N �

1 1 1 1 1 1 1 1

1

1

1

1

1 M

1

1

0

0

0

0 M0

0

0

0

0 0 0 0 0 0 0 0

0BBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCA

: �3�

The rows of N de®ne a binary error-correcting (8, 16, 4)
code with 16 codewords each containing eight bits. It can
detect up to three errors and correct one. Note that only
balanced block designs of the type (b, b, r, r, �) can make
e.c.c.'s of this type, but this simple example does show, at
least in outline, how codes, designs and combinatorics
are interrelated.
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2. Error-correcting codes and the crystallographic phase
problem

Direct methods of solving the phase problem use the
central idea of phase permutation in which a subset {H}
of strong normalized re¯ections well linked via triplet
and possibly quartet relationships are given permuted
phases, and input into either the tangent formula, a
minimal function (DeTitta et al., 1994), maximum
entropy (Bricogne, 1984), the Sayre equation in its many
variants (Sayre, 1952) or another phase expansion/
re®nement formula. Four general types of phase
permutation can be identi®ed:

(i) Quadrant permutation or full factorial design.
Each of the nc centric re¯ections is given both its
possible values, e.g. 0, � or ��=2, and each of the na

acentric re¯ections is assigned a quadrant by assigning
the possible values ��=4, �3�=4. This is a full factorial
design generating 2nc 4na � 2nc�2na phase choices. The
total number of degrees of freedom (d.o.f.) is de®ned as
nc � 2na, and it can be seen that this soon becomes a
combinatorial explosion, e.g. permuting the phases of
seven acentric re¯ections would give 14 degrees of
freedom and 16384 phase sets.

(ii) Magic integers. These were ®rst used by White &
Woolfson (1975) and later re®ned into a form quite
closely related to e.c.c.'s by Main (1977, 1978). Magic
integers have some of the properties of codes in the way
that they cover phase space, and are an ef®cient source
of phase permutation, and the relationship between
magic integers and e.c.c.'s has been explored by
Bricogne (1993, 1997b). The gain in ef®ciency compared
with the full factorial design is considerable: for
example, using the magic integers based on the Fibo-
nacci series would reduce the 16384 phase sets in (i) to
128 with a r.m.s. phase error of 48.0�.

(iii) Random phases. Each of the re¯ections in the set
is given a random phase, and one relies on the power of
the phase re®nement and extension formulae to re®ne
some of these phase sets such that the mean phase error
is suf®ciently low to recognize the structure in the
associate Fourier map. This is now the technique of
preference for large sets of re¯ections.

(iv) Error-correcting codes (Bricogne, 1993, 1997b).
Most eccs are unsuitable for this purpose; they need to
contain a suitable experimental design that balances
both the main re¯ection phases and the interactions
between them, as well as covering the phase space with
optimum ef®ciency. Selecting suitable candidates is a
non-trivial task, but those listed below have suitable
properties and were ®rst employed in the BUSTER
computer program (Bricogne, 1993):

(a) The Hadamard [8, 4, 4] code or the punctured
form which is the Hamming [7, 4, 3]. The former
generates 16 phase sets instead of 256 for eight
degrees of freedom; one of these will have, at most,
two wrong phases (you can, of course, be lucky and

have no incorrect phase choices!), whilst the latter
gives rise to 128 permutations, and one of these has,
at worst, only one wrong phase. The [8, 4, 4] code is
also known as the Reed±Muller RM(1, 3) code. The
Hamming [7, 4, 3] code appeared indirectly in a
phasing environment (it was not named as such) when
used by Woolfson (1954) to permute the signs of
seven centric re¯ections in the ab initio phase deter-
mination of a small organic molecule, ¯uorene.
However, he provided no link of his method with coding
theory or e.c.c.'s: the design was presented as an isolated
discovery.

(b) The Hadamard [16, 11, 4] code or the punc-
tured Hamming [15, 11, 3] form. The former generates
2048 phase sets instead of 65536 for 16 degrees of
freedom; one of these will have, at most, two wrong
phases. The latter describes 2048 sets instead of
32768, and one set will have, at most, one wrong
phase choice. The [16, 11, 4] code can also be
described as an RM(2, 4) code. Good (1954) used the
[15, 11, 3] form rather like Woolfson (1954) and called
the method substantialization since one phase choice
out of the 2048 was substantially correct. He proved
the assertions concerning the minimum number of
incorrect phase choices, but again there was no link
provided to existing work outside crystallography
involving e.c.c.'s or experimental designs. We are not
presenting results from this code in this paper since
the Golay code [see (d) below] provides 23 or 24 d.o.f.
with only twice as many phase sets and is therefore
much more ef®cient.

(c) The NordstroÈ m±Robinson (16, 256, 6) code or the
punctured (15, 256, 5) form producing 256 sets instead
of 216 � 65536 or 215 � 32768 for 15 or 16 d.o.f. One of
these will have a maximum of four (for 16 d.o.f.) or three
(for 15 d.o.f.) incorrect phase choices.

(d) The Golay [24, 12, 8] code or the punctured
[23, 12, 7] version producing 4096 phase combinations
instead of 224 � 16 777 216 or 223 � 8388608. One of
these will have a maximum of four incorrect phase
choices for 24 d.o.f., or three for 23 d.o.f. The gain in
ef®ciency here is quite exceptional, and the code links to
the extraordinary Leech lattice and the packing of
spheres in 24 dimensions in which each sphere has a
contact or kissing number of 196560, and is the densest
packing known in any dimension.

To use codes for phase permutation is straightfor-
ward:

(i) For centric phases, the binary digit 0 represents
one possible choice, and 1 represents the alternative, e.g.
for a phase restricted to 0 or �, 0 represents a 0� phase
angle and 1 represents an angle of �.

(ii) In the acentric situation, two bits are used to
assign the quadrant of the phase; one bit describes the
sign of the real part of the phase and the second bit
describes the imaginary part, i.e. 0, 0 � �=4; 1, 0 � 3�=4;
1, 1 � 5�=4; 0, 1 � 7�=4.
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3. Incomplete factorial designs

Another source of experimental designs that are
suitable for phase permutation are incomplete factorial
designs (i.f.d.'s). These have been used extensively by
Carter (see, for example, Carter, 1992, 1997) in the
design of experiments for screening crystal growth
conditions where initial trials do not give useful results.
The variables represented by the i.f.d.'s include
temperature, pH, ligands etc. I.f.d.'s are represented in
binary form and can be used like codes in a phasing
environment, and several have been constructed by
Carter for this purpose, notably, but not exclusively:

(i) Permuting 10 d.o.f. giving 48 phase sets instead of
1024.

(ii) Permuting 12 d.o.f. giving 64 sets instead of 4096.
(iii) Permuting 14 d.o.f. giving 100 nodes instead of

16384.
Although i.f.d.'s may not have all the properties of

codes, they can provide ef®cient designs in the cases that
are intermediate between the Hadamard, Hamming and
NordstroÈ m±Robinson codes and have a high level of
ef®ciency of covering in phase space. They were
successfully used in the solution of the tryptophanyl-
tRNA synthetase structure using maximum-entropy±
likelihood methods (DoublieÂ et al., 1994, 1995). In this
case, the unknown phases were those of strong re¯ec-
tions for which the MIR method was not suf®ciently
reliable, and i.f.d.'s were used to permute subsets of
them. We are currently investigating the general uses of
i.f.d.'s in a maximum-entropy phasing environment;
these results will be reported elsewhere and will not be
discussed further.

4. Codes, sphere packings and coverings

We are concerned in this paper with ef®cient designs for
phase permutation. Another way of looking at this is
via the construction of sphere packings in n-dimension
Euclidean space Rn [see Sloane (1984), for an intro-
duction to this method, and Conway & Sloane (1988),
for more detail]. This is discussed in detail by Bricogne
(1993, 1997b) and, in consequence, only a brief summary
will be presented here. A coordinate array for the
centres of the spheres is obtained from the n-dimen-
sional [n, k, d] or (n, M, d) code and used as the starting
point of the construction for both lattice and non-lattice
packings (Conway & Sloane, 1988, ch. 5). At a heuristic
level, the packing problem can be seen to be relevant to
an ef®cient phase permutation since we are trying in the
latter to sample the phase space as ef®ciently as possible
and this can be visualized as a multidimensional packing
problem by invoking the multidimensional Shannon
sampling criterion (Bricogne, 1993, Section 2.2.2.2). In
this case, we wish to pack Hamming spheres of radius r,
where r � Int��dÿ 1�=2�, as densely as possible in the
unit cell of a binary n-dimensional lattice.

An alternative way of viewing the search for optimal
codes is to consider the related problem of ®nding e.c.c.'s
with good covering properties, i.e. codes with codewords
having the property that no codeword is too far from its
nearest codeword. The covering radius R of a code is the
maximal distance of any n-dimensional vector from the
code. Codes speci®cally designed for optimum covering,
i.e. small R, are called covering codes (Graham &
Sloane, 1985), and it is clear that an ef®cient code for
phase permutation should have a small value of R so
that it can be guaranteed that the phase space is effec-
tively sampled without any major voids. All the codes
used in this paper have low covering radii. Self-dual
codes have the property of both optimum packing and
covering, but in general these properties are comple-
mentary. The Golay code is self-dual.

5. The maximum-entropy method and the need for
experimental designs

In previous papers in this series (Bricogne & Gilmore,
1990; Gilmore, K. Henderson & Bricogne, 1991;
Gilmore, A. N. Henderson & Bricogne, 1991), we have
described the application of the maximum-entropy
(ME) method as a tool for solving crystal structures
where the data sets are incomplete, or of < 1.2 AÊ reso-
lution and/or subject to major measurement errors. We
have concentrated especially, therefore, on powder,
electron diffraction and macromolecular diffraction data
sets. In all these cases, the method works as follows (see,
for example, Bricogne, 1984; Gilmore, 1996, Bricogne,
1993, 1997a):

(i) The structure factors, |Fh|obs are normalized to give
unitary structure factors |Uh|obs.

(ii) A basis set {H} is de®ned for those re¯ections
whose phase are known either from the rules of origin
and enantiomorph de®nition, from electron micro-
graphs suitably Fourier transformed or from multiple
isomorphous replacement/single isomorphous replace-
ment (MIR/SIR) experiments. The disjoint set of un-
phased re¯ections is {K}. The basis set de®nes the root
node of a phasing tree, and the amplitudes and phases of
its members are used as the constraints in an entropy
maximization.

(iii) Some strong unphased re¯ections, which opti-
mally enlarge the second neighbourhood of {H},
|Uh2K|obs, are given permuted phase values to build the
second level of a phasing tree. Each possible phase
choice de®nes a node, each of which is subjected to
constrained entropy maximization. Initially, the permu-
tation methods we used were either those of magic
integers or quadrant permutation in a full factorial
design. Rice-type likelihood functions are used to gauge
the correctness of each phase choice; the likelihoods are
analysed using simple t-test procedures (Shankland et
al., 1993). The best 8±16 nodes are retained and the rest
discarded.
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(iv) The permutation±likelihood analysis procedure
continues until a possible structure emerges or until
likelihoods begin to fall, and the structures are
completed, if necessary, in the usual way or via a ME
recycling procedure.

This calculation is carried out using the MICE
computer program (Gilmore & Bricogne, 1997; Gilmore
& Nicholson, 1994). However, it has an obvious
computational problem in that if we have n nodes at a
given level and m degrees of freedom for the re¯ections
whose phases are being permuted, then any full factorial
permutation will generate n2m phase sets, all of which
need to be subjected to constrained entropy maximiza-
tion. Not only is this a large computational problem, it
can also be dif®cult to interpret the results. It should
now be obvious that e.c.c.'s can be used to reduce the
scale of this problem dramatically making accessible
problems that were hitherto impracticable on the
grounds of computing requirements. To do this, the
Hadamard, Hamming, NordstroÈ m±Robinson and Golay
codes described in the previous section have been
incorporated as options into MICE. They came initially
from the Bricogne BUSTER program (Bricogne, 1993),
but are now used in the form of a code/i.f.d. database.

6. Analysis of the results of phase permutation using
e.c.c.'s

In the ME procedure, we assess the likely correctness of
a given set of phases using a suitable likelihood function
which measures how well we predict the unphased
re¯ection amplitudes from the phased ones. When
e.c.c.'s are used, there is also a second factor to consider:
the problem of phase errors. In a full factorial design, all
phase choices are spanned and one node must have
predominantly correct phases depending on how ®nely
the acentric re¯ection phases are sampled in the range
0±2�, whereas with e.c.c.'s at least one phase must be
incorrect, and with the Golay or NordstroÈ m±Robinson
codes at least three will be wrong by �. We then have a
choice: to continue with some wrong phases or to try
to reconstruct the full phase space from the sample
provided by the code. Bricogne (1993, 1997b) has
developed a multidimensional Fourier method for the
latter, but here we will not attempt this; instead we will
work with the incorrectly phased re¯ections in the
expectation that correct phases will predominate. To do
this, we need to analyse the log-likelihood gains (LLGs)
with care, and the following algorithm has proved
successful (Gilmore et al., 1997).

The likelihood evaluation gives rise to a log-like-
lihood gain into which the concept of a null hypothesis is
incorporated (Bricogne & Gilmore, 1990). Since we
have no estimates of the variances of the LLGs asso-
ciated with each node, we cannot simply keep those
nodes with the highest values. Instead, tests of signi®-
cance are used (Shankland et al., 1993; Bricogne, 1993,

1997b) in which the LLGs are analysed for phase indi-
cations using the Student t test. The simplest example
involves the detection of the main effect associated with
the sign of a single centric phase. The LLG average, ��,
and its associated variance, V�, is computed for those
nodes in a given level in the phasing tree in which the
sign of this permuted phase under test is `�'. The
calculation is then repeated for those sets in which the
same sign is `ÿ' to give the corresponding �ÿ, and
variance Vÿ. The t statistic is then

t � j�� ÿ �ÿj=�V� � Vÿ�1=2: �4�
The use of the t test enables a sign choice to be

derived with an associated signi®cance level s. The
calculation is repeated for all the single-phase indica-
tions, and is then extended to combinations of two and
three phases depending on the code that is used. This
problem is discussed in detail by Bricogne (1997b,
section 2.2). In fact, aliasing and confounding are always
problems that need to be addressed when dealing with
experimental designs ± predictably enough, you cannot
get something for nothing (see, for example, Cochran &
Cox, 1957, ch. 6A). In general, if a code can correct t
errors it can be used to retrieve phase interactions up to
and including order t without aliasing. Thus the
Hamming [7, 4, 3] and Hadamard [8, 4, 4] codes can
retrieve only main effects. To see why this is, consider
the [8, 4, 4] code as a source of phase permutation for
eight centric phases, labelled '1 ÿ '8. This is shown in
Table 1. There are 16 codewords and hence 16 phase
sets. To extract the two-phase interaction '1 � '2, we
add columns 1 and 2 modulo 2 to obtain (written as a
row rather than a column to save space)

1� 2 � 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1:

The two-phase interaction '7 � '8 gives exactly the
same result, as does '3 � '4. These three sets of inter-
actions, '1 � '2, '3 � '4, '7 � '8, are aliases of each
other and cannot be extracted independently. These
interactions are said to be confounded.

The NordstroÈ m±Robinson code can retrieve main and
two-phase interactions which adds considerably to its
power, whilst the Golay code can also include three-
phase interactions as well.

When using full factorial designs with good data, only
relationships with associated signi®cance levels less than
2% are used in the analysis, but this can be relaxed with
sparse diffraction data sets, and when codes are used.
Each of the m phase relationships, i, so generated is
given an associated weight,

wi � 1ÿ I1�si�=I0�si�; �5�
where I1 and I0 are the appropriate Bessel functions and
si is the signi®cance level of the ith relationship from the
t test. This weighting function re¯ects the need for a
scheme in which the absolute values of the signi®cance
levels are not given undue emphasis since they are
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themselves subject to errors arising from the nature of
the likelihood function used and the lack of error esti-
mates for the LLGs themselves.

Each node n is now given an overall score, sn,

sn � LLGn

Pm
j�1

wj; �6�

where the summation spans only those phase relation-
ships where there is agreement between the basis-set
phases and the t test derived phase relationships. The
scores are sorted and only the top 8±16 nodes are kept;
the rest are discarded. New re¯ections are now
permuted and a corresponding new set of ME solutions
is generated, and this continues until a recognizable
structure or structural fragment appears.

7. The codes in action

In order to demonstrate the versatility of the method,
we now describe the use of e.c.c.'s to three powder data
sets of varying degrees of overlap, sparse electron
diffraction data for C60 and a small protein, crambin, at
3 AÊ resolution using the codes described in x2. These are
all structures that have been solved by other methods;
this enables us to calculate the phase errors in the phase
sets that are generated by the e.c.c.'s. However, the
method has also been successfully applied to several
unknown structures, and these are discussed brie¯y in x8.

7.1. The Hamming [7, 4, 3] code and Mg3BN3 powder
data

The ME method has proved to be a powerful tool in
the solution of structures from powder diffraction data
sets. Bricogne (1991) extended the general theory of the
ME±likelihood formalism to encompass overlapped
intensity data, and the method was subsequently applied
to the Sigma-2 clathrasil and KAlP2O7 (Gilmore, K.

Henderson & Bricogne, 1991), Mg3BN3 (Shankland et
al., 1993), and the hitherto unsolved structures of
LiCF3SO3 (Tremayne, Lightfoot, Glidewell et al., 1992)
and formylurea (Tremayne, Lightfoot, Harris et al.,
1992). Dong & Gilmore (1998) have also used likelihood
in conjunction with modi®ed t tests to extract accurate
intensities of overlapped re¯ections in favourable cases
as well as their associated phases. However, codes are an
obvious extension of these ideas, and this paper contains
three examples, of increasing complexity, in which the
use of codes has led to the routine solution of crystal
structure from powder data.

The ®rst of these is the redetermination of the
structure of magnesium boron nitride, Mg3BN3. This
crystallizes in space group P63=mmc with a � 3:54453,
c � 16:0353 AÊ and Z � 2. There are 69 re¯ections in the
data set including two overlap sets, each of which
contains two re¯ections. The data resolution is 0.9 AÊ

(Hiraguchi et al., 1991). This is a small structure which is
easy to solve, but it provides the perfect vehicle for
demonstrating the simplest of the e.c.c.'s we have
described: the Hamming [7, 4, 3] code. The ®rst level of
the phasing tree was de®ned via the 107 re¯ection which
®xed the origin. The second level of 16 nodes (instead of
128) was generated by permuting the 2�10, 2�18, 3�14, 3�17,
104, 100012 and 300 re¯ections using the [7, 4, 3]
Hamming code. The nodes, their associated entropy,
likelihoods and scores are listed in Table 2(a). Two
likelihood values are quoted for each node: one
excludes overlapped re¯ections and the second includes
them. In general, the latter are the most useful, and are
always used in the powder structures described in this
paper. The results of the t test at the 20% signi®cance
level are shown in Table 2(b), and Table 2(c) lists the
phases that are deduced from this analysis. The 20%
level is high, but often needed in ab initio phasing using
this code in the early stages of phasing. Where the t test
generates a signi®cant phase indication, the phases are
always correctly indicated. Note that, as described in the
previous section, only main effects can be extracted
using this code. Table 2(d) shows the top nodes sorted by
scores [from equation (6)]. The number of violations for
a given node is the number of phase relationships listed
in Table 2(b) that are in contradiction to the basis-set
phases for that node.

The centroid map computed using basis-set re¯ec-
tions and those extrapolated by the ME process, suitably
weighted (Bricogne & Gilmore, 1990), calculated from
the node from the highest score, is shown in Fig. 1. All
the atoms are clearly indicated.

7.2. The NordstroÈm±Robinson (15, 256, 6) code and the
C60 buckminsterfullerene electron diffraction data

The C60 buckminsterfullerene structure can be solved
from 45 unique electron diffraction data (Dorset &
McCourt, 1994) at room temperature using symbolic

Table 1. The Hadamard [8, 4, 4] code used as a source of
phase permutation for eight centric re¯ections labelled

'1±'8

'1 '2 '3 '4 '5 '6 '7 '8

1 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1
3 1 0 1 0 1 0 1 0
4 0 1 0 1 0 1 0 1
5 1 1 0 0 1 1 0 0
6 0 0 1 1 0 0 1 1
7 1 0 0 1 1 0 0 1
8 0 1 1 0 0 1 1 0
9 1 1 1 1 0 0 0 0

10 0 0 0 0 1 1 1 1
11 1 0 1 0 0 1 0 1
12 0 1 0 1 1 0 1 0
13 1 1 0 0 0 0 1 1
14 0 0 1 1 1 1 0 0
15 1 0 0 1 0 1 1 0
16 0 1 1 0 1 0 0 1
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Table 2. Two-level phasing tree for Mg3BN3

(a) The ®rst level has a single node de®ned by the 107 re¯ection. The second level of 16 nodes was generated by permuting the 2�10, 2�18, 3�14, 3�17,
104, 100012, 300 re¯ections using the [7, 4, 3] Hamming code.

Node No.

Connected
to node
number Entropy

LLG without
overlaps

LLG including
overlaps

No. of incorrect
phases

1 0 ÿ0.12 0.00 0.00 0
2 1 ÿ1.86 ÿ4.51 ÿ4.58 7
3 1 ÿ0.84 2.66 2.87 3
4 1 ÿ1.47 0.84 1.05 3
5 1 ÿ1.36 ÿ0.30 ÿ0.27 3
6 1 ÿ1.78 ÿ0.66 ÿ0.40 3
7 1 ÿ1.31 0.14 0.16 3
8 1 ÿ1.62 1.79 2.03 3
9 1 ÿ0.69 2.11 2.36 3

10 1 ÿ0.68 1.84 2.06 1
11 1 ÿ1.57 1.56 1.79 4
12 1 ÿ1.32 0.17 0.13 3
13 1 ÿ1.76 ÿ0.56 ÿ0.36 4
14 1 ÿ1.39 ÿ0.40 ÿ0.42 4
15 1 ÿ1.41 0.77 0.91 4
16 1 ÿ0.82 2.21 2.42 4
17 1 ÿ1.87 ÿ4.44 ÿ4.47 4

(b) The main effect (single sign) analysis of LLG at the 20% signi®cance level.

Re¯ection No. hLLG�i hLLGÿi Signi®cance level Deduced phase

1 1.162 ÿ0.503 0.135 0
5 1.189 ÿ0.529 0.122 0
2 1.363 ÿ0.703 0.057 0

(c) The phase angles of the permuted re¯ections in (a) as deduced by the analysis of the LLGs.

Re¯ection No. h k l Deduced phase Correct?

1 2 ÿ1 0 0 Yes
5 2 ÿ1 8 0 Yes

11 3 ÿ1 4 0 or 180
21 3 ÿ1 7 0 or 180
14 1 0 4 0 or 180

3 1 0 12 0 or 180
2 3 0 0 0 Yes

(d) The resulting scores in order of preference. The number of violations is de®ned in the text.

Node No.
LLG including
overlaps

LLG without
overlaps Entropy Score

No. of
violations

9 2.359 2.110 ÿ0.694 6.783 0
10 2.060 1.841 ÿ0.684 5.924 0

3 2.870 2.662 ÿ0.836 5.521 1
16 2.415 2.209 ÿ0.823 4.647 1

4 1.045 0.842 ÿ1.471 2.017 1
8 2.032 1.791 ÿ1.616 1.933 2

15 0.912 0.768 ÿ1.410 1.760 1
11 1.792 1.559 ÿ1.568 1.705 2

7 0.157 0.137 ÿ1.309 0.148 2
12 0.128 0.168 ÿ1.319 0.121 2

2 ÿ4.576 ÿ4.514 ÿ1.856 0.000 3
17 ÿ4.471 ÿ4.439 ÿ1.869 0.000 3
13 ÿ0.363 ÿ0.560 ÿ1.758 ÿ0.355 2

6 ÿ0.396 ÿ0.657 ÿ1.782 ÿ0.387 2
5 ÿ0.271 ÿ0.304 ÿ1.360 ÿ0.515 1

14 ÿ0.418 ÿ0.399 ÿ1.388 ÿ0.793 1
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addition methods. It is an excellent example of a sparse
data set in space group Fm3m with a � 14:26 AÊ and a
resolution of �1.4 AÊ . In our experience, it is not rou-
tinely solvable by conventional direct-methods black-
box programs; it is, however, simply solved by the ME
method using the NordstroÈ m±Robinson (15, 256, 6)
code.

The origin was de®ned by the 330 re¯ection, then 256
nodes (instead of 215) were generated by permuting the
phases of 15 re¯ections. Table 3(a) lists the permuted
re¯ections and their associated U values, and Table 3(b)
lists the results of the LLG analysis at the 5% signi®-
cance level. Note that the two-phase interactions can be
included in the analysis. Because there are more nodes,
the signi®cance level is much reduced from the 20%

value used in Mg3BN3. Table 3(c) outlines the char-
acteristics of the centroid maps derived from the nodes
with the highest associated scores; this includes the map
correlation coef®cients, using the phases listed by
Dorset & McCourt (1994). Some maps have a large peak
at the origin, and so can be rejected. This left ®ve viable
maps; the fourth ranked of these has a mean phase error
of 9� and a map correlation coef®cient of 0.90. A section
of this map is shown in Fig. 2. All map correlation
coef®cients quoted in this paper use F magnitudes from
both the basis set and the extrapolates to the resolution
of the basis set, but only including the latter if the
associated weight is greater than 0.1.

The preferred map is not ranked ®rst, and this is a
common and expected feature of using e.c.c.'s without

Table 3. Phasing C60 from electron diffraction data from Dorset & McCourt (1994)

(a) The re¯ections given permuted phases in a Nordstrom±Robinson (15, 256, 6) code. The origin was de®ned by the 330 re¯ection.

Re¯ection No. h k l |Uh|obs

1 2 2 0 0.162
2 8 0 4 0.112
3 6 6 6 0.109
5 6 6 0 0.102
6 4 4 4 0.099
7 5 5 5 0.088
9 4 2 0 0.085

12 6 6 4 0.083
13 1 1 1 0.079
14 8 2 2 0.074
15 4 4 0 0.073
21 6 6 2 0.069
24 7 7 1 0.068
25 9 3 3 0.068
29 7 7 3 0.061

(b) LLG analysis at the 5% signi®cance level.

Re¯ection 1 Re¯ection 2 hLLG�i hLLGÿi Signi®cance Sign

13 0.079 ÿ0.119 0.000 �
25 ÿ0.058 0.017 0.041 ÿ

1 15 0.072 ÿ0.112 0.000 �
2 15 ÿ0.068 0.027 0.008 ÿ
3 5 ÿ0.067 0.025 0.011 ÿ
3 21 ÿ 0.113 0.071 0.000 ÿ
5 12 ÿ0.063 0.022 0.019 ÿ
5 14 0.019 ÿ0.060 0.030 �

12 14 0.041 ÿ0.081 0.001 �
24 25 0.022 ÿ0.063 0.019 �

(c) The resulting scores. Map cc is the map correlation coef®cient; No. � and No. ÿ de®ne the number of extrapolated phases that are 0 or 180�,
respectively, and the Map features describe any dominant or unexpected features in the ®nal centroid map.

Node No. LLG Entropy Score
No. of
violations Phase error No. � No. ÿ Map cc Map features

248 1.388 ÿ0.589 9.691 3 70.2 2 24 0.09 Large origin peak
122 1.133 ÿ0.680 9.034 2 63.7 14 12 0.46 OK

39 0.750 ÿ0.629 6.727 1 64.1 14 12 0.43 OK
186 1.072 ÿ0.645 6.404 4 67.0 2 24 0.09 Large origin peak

41 0.542 ÿ0.506 4.855 1 104.0 8 16 0.05 OK
127 0.482 ÿ0.518 3.842 2 9.1 13 13 0.90 OK
117 0.550 ÿ0.616 3.831 3 81.4 9 17 0.30 Large origin peak
107 0.634 ÿ0.593 3.792 4 60.7 14 12 0.44 OK
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trying to correct phase errors. Phase errors in the basis
set are almost certain and distort the LLG values and
their analysis. However, the correct or at least a viable
solution in all the examples cited here still lies in the top
eight nodes when ranked by score.

7.3. The NordstroÈm±Robinson (15, 256, 6) code and the
Sigma-2 powder data

Sigma-2 ([Si64O128] � 4C10H17N) is a clathrasil phase
for which high-quality synchrotron data are available
(McCusker, 1988). It crystallizes in space group I41=amd
with a � 10:2387 and c � 34:3829 AÊ . The cage contains
disordered 1-adamantanamine molecules used in the
Sigma-2 synthesis. The data set comprises 232 unique
non-overlapped data plus 13 pairs of overlaps. The
effective data resolution is 1.3 AÊ . Ignoring the
1-adamantanamine molecule, the asymmetric unit
comprises four Si and seven O atoms. The structure
readily yields to ME methods using a six-level phasing
tree (Gilmore, K. Henderson & Bricogne, 1991), and the
data set is used here as a demonstration of the effec-
tiveness of the NordstroÈ m±Robinson (16, 256, 6) code.
Table 4 summarizes the process: the origin was de®ned
by the 100021 re¯ection with a U magnitude of 0.276; this
was followed by a permutation of 16 centric phases to
generate 256 nodes. Table 4(b) lists the resulting scores
in order of preference following the LLG analysis at the
5% signi®cance level. All these maps show the positions
of the Si atoms, and the solution ranked second also
gives the positions of ®ve O atoms.

7.4. The [24, 12, 8] Golay code and the NU-3 powder
data set

McCusker and Baerlocher have reported two forms
of the zeolite NU-3 (McCusker, 1993; Baerlocher &
McCusker, 1994) which has the LEV-type framework. In
one case, 1-adamantanamine (ADAM) was used in the
synthesis and in the other N-methylquinuclidinium
iodide (QUIN) was used. We have used the ADAM
form. The space group is R�3m with a � 13:2251 and
c � 22:2916 AÊ . There are 373 re¯ections in total, of
which 199 are in 80 overlap sets with up to seven under a
single overlap envelope; the maximum resolution is
1.1 AÊ . The origin was de®ned by the 107 re¯ection with a
U magnitude of 0.345. The 24 re¯ections listed in Table

5(a) were given permuted phases using the [24, 12, 8]
Golay code; the resulting sorted scores following LLG
analysis based on values that included the overlapped
re¯ections at the 5% signi®cance level are shown in
Table 5(b). The centroid map for the top-ranked solu-
tion is shown in Fig. 3; the entire zeolite framework and
the envelope of the 1-adamantanamine guest molecule
is clearly indicated. As in x7.3, the entire calculation was
completely routine.

7.5. The [24, 12, 8] and [23, 12, 7] Golay codes and
crambin at 3 AÊ

The ®rst use of e.c.c.'s in an ab initio macromolecular
environment was the location of the Zn atom in avian
pancreatic polypeptide (App) (Gilmore & Nicholson,
1994) using only the 3 AÊ data (although the structure
diffracts to 1 AÊ ). A three-level phasing tree was
constructed in which the ®rst level de®ned the origin, the
second used the Golay code to generate 4096 new nodes,
and the third used the NordstroÈ m±Robinson code on
child nodes of the best eight from level two. A total of
1� 4096� �8� 256� � 6145 nodes were generated, and
one of the ®nal nodes clearly indicated the Zn atom to
within 0.5 AÊ of its re®ned position. The Zn atom could
not be located by Patterson methods at this resolution.

Here we are employing a similar strategy in the case
of crambin. The data set we used diffracts to �1.3 AÊ

(Hendrickson & Teeter, 1981) which is an unusually high
resolution. We chose a subset of these data with a
maximum resolution of 3 AÊ to more closely simulate
more typical protein diffraction data, although this is
still atypical in the sense of being relatively accurate and
with few systematic errors. The space group is P21 with
a � 40:96, b � 18:65 and c � 22:54 AÊ , � � 90:7�. The
asymmetric unit comprises 202� C, 55� N, 64� O and
6 � S, and, whereas structures of such complexity are
now solvable with 1.0±1.1 AÊ data, direct methods are
unable to produce viable phases at 3 AÊ .

The origin was partially de®ned by ®xing the phases
of two re¯ections: the 20�5 and the 30�4. Fixing the
origin along z and de®ning the enantiomorph was
carried out de facto by the process of tree building and
analysis. For the second level of the phasing tree, 13
re¯ections with a total of 24 d.o.f. were given permuted
phases via the Golay [24, 12, 8] code generating 4096
nodes; the top eight, based on scores, were kept. One

Fig. 1. The centroid map for node 9 for Mg3BN3 projected down the b axis. Crosses represent atomic positions. 1 and 2: Mg atoms; 3 and 4: N
atoms; 5: B atoms.
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phase set in this group had a mean phase error of 37.5�

and a map correlation coef®cient of 0.54. The third level
involved permuting the phase of 12 re¯ections with 23
d.o.f. via a Golay [23, 12, 7] e.c.c. Of the top eight nodes,

there was a solution with a mean phase error of 46.8�

and a correlation coef®cient of 0.46. Finally, the top
eight nodes were kept and 15 re¯ections with 24 d.o.f.
were given permuted phases using the Golay [24, 12, 8]
code. By this time, the accumulation of phase errors
begins to bite, and the best mean phase error is 58.5�

with a correlation coef®cient of 0.33. A total of
42 re¯ections contribute to the error statistics. The
whole process is outlined in Table 6; a total
of 1� 4096� �2� �8� 4096�� � 69 633 nodes were
studied, but using a network of Unix workstations this
calculation took less than 72 h in total. The best node (in
the sense of minimum phase error) from level 4 is
obviously not suf®cient to generate maps from which the
structure can be extracted, but it is a tribute to the power
of the Golay code and the ME formalism that such a
calculation is even possible.

8. New structures

We have also solved two unknown structures in this way:
(i) 3-Cyano-4-dimethylaminobiphenyl, C15H14N, from

electron diffraction data in space group Pna21 with 118
re¯ections at a maximum resolution of 1.4 AÊ , but an
effective resolution nearer 2 AÊ (Voigt-Martin et al.,

Table 4. Phasing the Sigma-2 clathrasil from powder diffraction data from McCusker (1988)

(a) The re¯ections given permuted phases in a Nordstrom±Robinson (16, 256, 6) code. The origin was de®ned by the 100021 re¯ection with a U
magnitude of 0.276.

Re¯ection No. h k l |Uh|obs

1 6 0 0 0.349
2 0 0 24 0.339
3 1 1 6 0.329
4 2 2 4 0.319
5 4 4 8 0.288
6 6 0 12 0.277
8 4 0 18 0.254
9 2 0 8 0.247

13 2 1 1 0.223
16 2 2 20 0.212
18 4 0 14 0.210
20 3 0 1 0.207
21 1 0 17 0.206
22 5 4 9 0.202
27 6 3 1 0.181
33 7 2 3 0.168

(b) The resulting scores in order of preference following LLG analysis at the 5% signi®cance level.

Node No.
LLG including
overlaps

LLG excluding
overlaps Entropy Score

No. of incorrect
phases in
basis set

4 0.835 0.657 ÿ0.521 0.669 7
12 0.629 0.484 ÿ0.550 0.504 4
76 0.601 0.481 ÿ0.485 0.481 6

130 0.552 0.693 ÿ0.711 0.442 5
194 0.471 0.391 ÿ0.496 0.377 7
164 0.445 0.433 ÿ0.535 0.356 5
172 0.418 0.242 ÿ0.478 0.334 4
144 0.389 0.223 ÿ0.572 0.311 7

Fig. 2. A typical section for the preferred centroid map for C60. The
crosses are C-atom positions taken from the solved structure at low
temperature. This data set was collected at room temperature.
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1997). This was a dif®cult problem, and was solved using
the Golay and NordstroÈ m±Robinson codes. An inde-
pendent modelling calculation veri®ed the result.

(ii) The metastable alloy phase AlmFe, commonly
found as primary particles in aluminium alloys cast at
high cooling rates, has been studied (Gjùnnes et al.,
1998). The electron diffraction data were collected from
eight different projections using a novel precession
technique, and supplementary information was obtained
via the CBED method to check the space-group
symmetry and to con®rm the proposed structural
models. The resulting data set comprised more than 500
unique re¯ections in space-group I �42m. The structure
was solved totally independently using Patterson, ME
and traditional direct methods, all of which indicate a
somewhat disordered structure with a network of Al10

polyhedra coordinating central Fe atoms. Some correc-
tion was made for dynamical scattering, but even

without this it is possible to solve this complex inorganic
structure.

9. Conclusions and future developments

We have demonstrated the power of e.c.c.'s in a ME±
likelihood environment as a source of effective experi-
mental designs for phase permutation, solving both
known and unknown structures with some data sets that
are resistant to traditional direct methods. Some
possible developments and extensions to these ideas
that are currently under investigation are as follows:

(i) Errors naturally accumulate with e.c.c.'s when
building phasing trees, and phase re®nement is a
necessary development. In general, the tangent formula
is unstable with much of these data because they are
sparse or of low resolution. The Bayesian method based
on likelihood optimization that we have sometimes

Table 5. Phasing the NU-3 zeolite from powder diffraction data from McCusker (1993) and Baerlocher & McCusker
(1994)

(a) The re¯ections given permuted phases in a [24, 12, 8] Golay code. The origin was de®ned by the 107 re¯ection with a U magnitude of 0.345.

Re¯ection No. h k l |Uh|obs

1 4 0 ÿ2 0.5731
3 5 0 ÿ7 0.4611
4 4 0 16 0.4327
5 10 ÿ3 7 0.3933
7 8 ÿ2 ÿ2 0.3543
8 1 0 ÿ5 0.3318
9 7 ÿ1 ÿ7 0.3128

10 3 ÿ1 ÿ2 0.3045
11 4 ÿ2 0 0.3037
12 9 ÿ4 ÿ5 0.2844
13 2 0 2 0.2808
16 9 ÿ1 ÿ5 0.2629
17 0 0 6 0.2584
19 5 0 ÿ1 0.2504
20 1 0 ÿ14 0.2495
21 8 ÿ2 ÿ5 0.2475
23 8 0 5 0.2352
25 5 0 ÿ4 0.2260
30 5 0 ÿ16 0.2089
33 3 0 0 0.2063
34 8 0 ÿ4 0.2055
35 5 0 ÿ13 0.2020
36 4 0 19 0.2003
40 4 0 ÿ17 0.1899

(b) The resulting sorted scores following LLG analysis at the 5% signi®cance level.

Node No.
LLG including
overlaps

LLG excluding
overlaps Entropy Score

No. of incorrect
phases in
basis set

3349 12.887 9.003 ÿ2.643 0.242 5
1738 13.515 7.171 ÿ2.435 0.233 11
3461 15.502 7.441 ÿ3.047 0.223 7

914 14.025 11.050 ÿ2.281 0.221 8
3433 9.621 9.275 ÿ2.866 0.166 9
1425 6.030 3.353 ÿ2.648 0.133 11
1301 9.005 14.502 ÿ2.780 0.129 5
1627 7.187 9.083 ÿ3.055 0.124 15



CHRISTOPHER GILMORE, WEI DONG AND GEÂ RARD BRICOGNE 81

Table 6. Phasing the crambin data at 3 AÊ

(a) The re¯ections given permuted phases. The origin was partially de®ned by the two re¯ections in level 1. All subsequent levels used either a
[24, 12, 8] or a [23, 12, 8] Golay code.

Level Number h k l |Uh|obs

1 11 2 0 ÿ5 0.088
1 24 3 0 ÿ4 0.077
2 1 4 3 ÿ4 0.105
2 4 7 2 4 0.100
2 5 0 2 0 0.097
2 7 9 2 0 0.095
2 8 4 0 4 0.094
2 9 6 1 4 0.094
2 13 9 1 3 0.087
2 14 6 4 ÿ1 0.086
2 16 8 1 0 0.085
2 18 1 3 ÿ4 0.083
2 20 1 1 0 0.080
2 22 4 4 0 0.078
2 26 4 0 0 0.077
3 3 7 3 3 0.102
3 10 12 1 1 0.089
3 15 5 5 0 0.085
3 17 11 2 1 0.085
3 21 5 3 4 0.079
3 27 7 2 ÿ5 0.077
3 29 3 3 ÿ3 0.076
3 35 1 0 5 0.074
3 36 4 5 1 0.072
3 38 10 2 3 0.071
3 52 10 1 3 0.066
3 53 2 1 5 0.066
4 12 11 0 3 0.087
4 28 0 1 5 0.076
4 33 4 0 5 0.074
4 34 7 4 ÿ3 0.074
4 41 2 4 3 0.069
4 43 3 0 0 0.067
4 44 4 0 7 0.067
4 50 1 4 ÿ5 0.066
4 54 0 2 6 0.066
4 55 5 0 ÿ1 0.066
4 59 2 4 ÿ2 0.064
4 61 5 0 0 0.064
4 64 4 3 ÿ3 0.064
4 66 13 1 ÿ2 0.063
4 70 9 3 2 0.062

(b) The resulting scores following LLG analysis at the 5% signi®cance level.

Level
No. of re¯ections
in the basis set Node No. LLG Entropy Score Phase error (�) Map cc

1 2 0.00 ÿ0.007
2 15 3074 1.794 ÿ0.118 39.2 36.5 0.58
2 15 2127 1.773 ÿ0.113 38.8 37.5 0.54
2 15 2774 1.739 ÿ0.118 38.0 87.4 0.03
2 15 3543 1.735 ÿ0.116 37.9 90.9 0.01
2 15 3739 1.762 ÿ0.116 35.1 59.0 0.38
2 15 3918 1.602 ÿ0.119 35.0 70.9 0.13
2 15 2819 1.749 ÿ0.115 34.8 58.6 0.35
2 15 2775 1.454 ÿ0.114 33.2 80.8 0.09
3 27 17933 3.970 ÿ0.204 208.6 70.8 0.20
3 27 23101 3.867 ÿ0.199 206.9 46.8 0.46
3 27 32248 3.987 ÿ0.201 201.6 81.8 0.11
3 27 23455 3.497 ÿ0.196 200.9 55.1 0.39
3 27 11604 4.320 ÿ0.199 197.1 89.1 0.00
3 27 32310 3.813 ÿ0.197 196.6 73.9 0.23
3 27 8131 4.044 ÿ0.194 196.3 79.1 0.09
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employed (Bricogne & Gilmore, 1990; Gilmore et al.,
1990) can be useful, but is sometimes unstable or unable
to re®ne phases very far from their initial values.
Modi®cations to this process are being developed.

(ii) In the powder diffraction case, e.c.c.'s can be used
as a source of spherical designs for hyperphase permu-
tation (Bricogne, 1991, 1997b). This means that both
phases and amplitudes of overlapped re¯ections can be
permuted using the appropriate codes, and both can be
recovered with suitable analysis of the associated LLGs.
Initial studies of the use of ME and likelihood to resolve
overlapped intensities without the use of codes have
proved to be successful in favourable cases (Dong &
Gilmore, 1998), but the use of e.c.c.'s could extend these
ideas considerably.

(iii) There has been a great deal of recent activity
in using structural fragments translated and rotated

through the unit cell to solve organic crystal structures
from powder data (see, for example, Harris & Tremayne,
1996; Shankland et al., 1997; Kariuki et al., 1997). These
methods use various search procedures, e.g. genetic
algorithms, to carry out the search. Codes provide an
ef®cient way of de®ning the initial search parameters
(Bricogne, 1997b) and could be used to increase the
power of these methods by providing more ef®cient
starting points. We have used codes to de®ne molecular
envelopes as a starting point in modelling studies of this
type with considerable success (Tremayne et al., 1997).

(iv) The literature on coding theory is vast. Other
codes, not necessarily binary, may well exist with
excellent design and covering properties that could
extend these ideas further.

(v) Codes can also be used in conventional direct
methods. We have examined the use of the Golay and

Table 6 (cont.)

Level
No. of re¯ections
in the basis set Node No. LLG Entropy Score Phase error (�) Map cc

3 27 11925 3.938 ÿ0.201 195.2 78.5 0.11
4 42 47716 8.447 ÿ0.265 536.2 67.4 0.21
4 42 51511 7.360 ÿ0.264 503.1 65.8 0.27
4 42 52105 7.588 ÿ0.260 496.2 61.7 0.32
4 42 51087 7.798 ÿ0.274 494.2 63.5 0.31
4 42 49055 6.872 ÿ0.270 491.1 61.4 0.31
4 42 52647 6.718 ÿ0.268 479.8 62.6 0.31
4 42 52591 7.043 ÿ0.265 474.5 62.6 0.29
4 42 50551 7.393 ÿ0.268 468.5 61.9 0.31
4 42 50043 7.281 ÿ0.270 468.4 58.5 0.35
4 42 50578 7.331 ÿ0.269 465.4 71.3 0.22
4 42 52023 7.106 ÿ0.264 465.0 58.8 0.33
4 42 61561 6.991 ÿ0.254 464.4 72.6 0.20
4 42 64121 6.293 ÿ0.265 462.6 64.9 0.29
4 42 39954 7.157 ÿ0.256 462.1 99.8 ÿ0.08
4 42 46940 7.492 ÿ0.272 460.6 70.4 0.19
4 42 45157 7.833 ÿ0.262 459.0 67.6 0.21

Fig. 3. The NU-3 structure projected down the c axis for node 3349. The entire framework is clearly visible.



CHRISTOPHER GILMORE, WEI DONG AND GEÂ RARD BRICOGNE 83

NordstroÈ m±Robinson codes as a starting point in
multisolution direct methods using the tangent formula.
The results are encouraging, and will be published
elsewhere (Gilmore et al., 1999).
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